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ABSTRACT

Electron localization in HCl salt form of polyaniline (PAN-ES) and its methyl ring-

substituted derivative, poly(o-tol iidine)(POT-ES), has been investigated by optical, trans-

port and magnetic studies. Compared with PAN-ES, POT-ES has increased electron local-

ization though the band structure, crystal~lnity and intrachain coherence length are similar

for the two polymers. The localization is proposed to be induced by a CH 3 group on each C6

ring which decreases the interchain diffusion rate through reduction of interchain coherence

and increased interchain separation.

INTRODUCTION

The achievement of high conductivity a for polymers has both theoretical and prac-

tical importance. Often high a has been attributed to increase of conjugation length[l].

Though the decrease of conjugation length does decrease the conductivity[2], other fac-

tors may be more important in control of very high conductivity of polymers. It is well-

known that in a strictly one-dimensional disordered system (ld-DS) all electron states are

localized with any weak disorder[3]. However polymer systems are quasi ld-DS (qld-DS)

where interchain diffusion is not negligible. The interchain diffusion rate w plays an im-

portant role in electron localization of a qld-DS[4,5]. It can be shown[4,5] that with in-

crease of w the elecron localization length a - 1 and a of a qld-DS increase. The value

of w depends on interchain transfer integral t._, interchain coherence length _* and intra-

chain coherence length '4'5J or conjugation length. Thus the increase of the conjugation

length or 11 does increase a- 1 and a of polymers. However the other two factors may also

play important roles in electron localization. We explore their importance in this paper.

*Present address, Alchemi Research Center, Thanc-400601, Naharashtra, India



PAN and POT were synthesized in the base and salt form as described earlier[5](Fig.la).

Pressed pellets were used for most of the transport measurements, with the exception of

microwave studies where films cast from N-Methyl-2-Pyrrolidinone were used. A four-

probe technique was utilized for o-d measurements. The 'cavity perturbation' technique

was adopted for the microwave measurement. EPR X-band measurements ,itilized a Bruker

EPS 300 spectrometer. The static X was measured by Faraday technique[5].

The EPR peak-to-peak linewidth (Fig. 1b) of POT-ES monotonically decreases from
2.7 G tp 0.7 G as T increases from 4 K to 300 K, however that of PAN-ES has very

little T-dependence (- 0.3 G). The optical absorption spectra of PAN-ES and POT-ES in

aque', ,.s 80% acetic acid (inset of Fig. lb) are oualitatively the same. For both p,,:±,

o, ox exp[-('b/T)1 '2 , but To = 5000 K for PAN-ES and 30000 K for POT-ES (Fig. 2a).

The room temperature o- of PAN-ES is about 100 - 101 S/cm, and that of POT-ES is

10- 3 _ 10-2 S/cm, depending on moisture, ageing, doping, etc. The dielectric constants c

at frequency 6.5 GHz increases with T, from 20 to 100 for PAN-ES and 7 to 10 for POT-ES

as T from 50 K to 300 K. The thermoelectric powers S(T) of the two polymers have similar

U-shape T-dependence (inset of Fig. 2b). The minimum of S(T) for PAN-ES is between

150 K and 200 K and for POT-ES it is approximately 300 K. At low T (< 300 K), S(T)

of POT-ES can be expressed as A + B/T[5], while S(T) of PAN-ES can be approximately

decomposed ito A + B/T + CT[7].
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Fig.2 (R) DC conductivity of PAN-ES (9) and POT-ES (o). (b) Dielectric constant of

unoriented PAN-ES (o) (Javadi et al, Phys. Rev. B 39 (1989) 3579.) and POT-ES (x).
Inset is thermoelectric power of PAN-ES (o) and POT-ES (x).



We 'ompare here two polymers, the HCI salt form of polyaniline (PAN-ES) and its

methyl ring-substituted derivative, polv(o-toluidine) (POT-ES) (Fig.la)j5S. They have sim-

ilar electronic structures, crystallinity and more importantly [1', but different 4jL and in-

terchain space or t±[5,6]. Analyses of T-dependent DC conductivity o>d:(T), electric field

dependent a(E), thermopower S(T), microwave conductivity and dielectric constant f at 6.5

GHz, susceptibility X, and electron paramagnetic resonance (EPR) linewidth and lineshape

together show that there is greater electron localization in POT-ES as compared with that

in PAN-ES[5. Our study together with the results of X-ray studies[6] suggests that the

increased electron localization in POT is associated with the increased one-dimensionality

induced by( decreased interchain diffusion rate due to (i) the increased interchain separation

and (ii) greater interchain disorder within the crystalline regions. Both are due to existence

of CH 3 on C6 rings. The CH 3 has larger size than H and its location at the "a" or "b"

position of C6 ring (Fig.la) is dependent on ring flipping. Hence it induces rF.,--. increase

of interchain spacing and disorder. The transport data suggczt. that conduction is due to

quasi-ld variable range hoping [51. Based on this model quantitative analyses show t- 1 for

POT-ES is several A, while for PAN-ES is a few tens A.

EXPERI'MENTAL TECHNIQUES AND RESULTS
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Fig.1 (a) Schematic structure of PAN-ES and POT-ES. (b) EPR peak-to-pealk linewidth
(f PAN-ES () (from P. Vaca et al, to be published) and POT-ES (x). Inset is the optical

spectra 0f PAN-ES (solid line) and POT-ES (dashed line) in aqueous 80% acetic acid.)X • • 000000•00 00 00



DISCUSSION

"The EPR linewidth, DC conductivity, microwave dielectric constant and thermoelectric

power altogether reflect increased electron localization in POT-ES compared with PAN-ES.

The narrowed EPR linewidth indicates a strong spin motional or exchange narrowing[5].

The greater EPR linewidth as well as lower conductivity and dielectric constant in POT-ES

is a signature of increased spin localization in POT-ES[5]. The T-dependence of o-(T) oc

exp[-(To/T)' 2 ] and S(T) o A + BIT (at low temperatures) indicating a qld-VRH of

charges between nearest neighboring chains[5]. Within the model, To = 16a/N(EF)kBz[5

where N(EF) is density of states at Fermi energy, kB is the Boltzmann constant and z is the

number of nearest neighboring chains. Utilizing N(EF) = 3.5 (PAN-ES) and 1.7 (POT-ES)

states/eV-2rings[5], we obtain a - 1 -. 30 A for PAN-ES and 9 A for POT-ES.

Two polymers have very similar electronic structures and crystallinity, but very different

electron localization and transport properties. Based on the EPR lineshape analyses[5] and

x-ray studies[6], the increased electron localization is attributed to the decreased interchain

diffusion rate, associated with the deccease of __ and increased interchain separation (de-

crease of t1 ), not with the change in conjugation length. The studies of oriented PAN-ES[7]

suggest that PAN-ES represents a new class of qid disordered conductors where electrons

are delocalized to a bundle of chains with the dimension determined by ±[7] while POT-ES

remains as a non-metal. Our results demonstrate that maximizing interchain coherence and

transfer integral is essential to improve the conductivity of polymers.
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